Existence of multiple solutions for modified Schrödinger–Kirchhoff–Poisson type systems via perturbation method with sign-changing potential

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Multiple Sign-changing Solutions for Kirchhoff Type Problems

This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form

متن کامل

Existence of multiple positive solutions for a p-Laplacian system with sign-changing weight functions

A p-Laplacian system with Dirichlet boundary conditions is investigated. By analysis of the relationship between the Nehari manifold and fibering maps, we will show how the Nehari manifold changes as λ,μ varies and try to establish the existence of multiple positive solutions. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Existence of Non-negative Solutions for Predator-prey Elliptic Systems with a Sign-changing Nonlinearity

By the method of monotone iteration and Schauder fixed point theorem, we prove the existence of non-negative solutions to the system −∆u = λa(x)f(v) in Ω, −∆v = λb(x)g(u) in Ω, u = v = 0 on ∂Ω, for λ sufficiently small, where Ω is a bounded domain in RN with smooth boundary ∂Ω and λ is a positive parameter. In this work, we allow the sign changing nature of a and b with a(x)b(x) ≤ 0, ∀x ∈ Ω̄.

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2017

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2016.12.006